

# Abstracts

## Submicron-Gate InP Power MISFET's with Improved Output Power Density at 18 and 20 GHz

*M.D. Biedenbender, V.J. Kapoor, K.A. Shalkhauser, L.J. Messick, R. Nguyen, D. Schmitz and H. Jurgensen. "Submicron-Gate InP Power MISFET's with Improved Output Power Density at 18 and 20 GHz." 1991 Transactions on Microwave Theory and Techniques 39.8 (Aug. 1991 [T-MTT]): 1368-1375.*

Presented here are the microwave characteristics at 18 and 20 GHz of submicron-gate iridium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFET's) for high output power density applications. InP power MISFET's were fabricated with 0.7  $\mu$ m gate lengths, 0.2 mm gate widths, and drain-source spacings of 2, 3, and 5  $\mu$ m. The output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacings of 3  $\mu$ m. At 18 GHz output power densities of 1.59 W/mm with a gain of 3.47 dB and a power-added efficiency of 20% were obtained for a drain-source spacing of 3  $\mu$ m. At 20 GHz output power densities of 1.20 W/mm with a gain of 3.17 dB and a power-added efficiency of 13.6% were obtained for a drain-source spacing of 3  $\mu$ m. The output power density is 2.7 times greater than has previously been measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency has also been increased. The output power density is also 50% better than recently reported for comparable gate width pseudomorphic HEMT's at 20 GHz. The power gain was stable to within 3.0% over 12 h, and the drain current variation during the same time was less than 5%.

[Return to main document.](#)

Click on title for a complete paper.